Tutoriels intelligence artificielle Formation Python - Machine Learning 10/30 : NumPy

Pour approfondir le sujet

Sur le même thème :

JetBrains propose DataSpell, son nouvel environnement de développement dédié à la data science

JetBrains, un éditeur de logiciels pour développeurs, présente en mode preview, son nouvel environnement de développement (IDE) intitulé DataSpell. Dédié à la data science,...

ABBYY enrichit sa bibliothèque de développement open source dédiée au machine learning

ABBYY, une multinationale spécialisée dans la conception de logiciels et dans "l'intelligence digitale", étend les capacités de sa bibliothèque de développement open source NeoML....

Facebook AI et le HZM utilisent l’intelligence artificielle pour prévoir les effets des combinaisons de médicaments

Dans le cadre d'une recherche collaborative entre le centre de recherche allemand Helmholtz Zentrum München (HZM) et Facebook AI, un modèle d'intelligence artificielle a...

Prix Inria : le projet scikit-learn, Vincent Hayward et María Naya-Plasencia parmi les lauréats

Ce vendredi 17 janvier, Inria organise sa cérémonie de remise des prix. Créés en 2011 et soutenus par l’Académie des sciences et Dassault Systèmes,...

Formation Python – Machine Learning 10/30 : NumPy

Numpy est le package python le plus important pour faire du machine learning et du data science. Numpy comprend le tableau array dit ndarray (n dimensions) qui est un objet extrêmement puissant en machine learning et data science.

Numpy propose beaucoup de méthode pour le ndarray, dans cette vidéo nous voyons les différents constructeurs qui permettent d’initialiser les tableau ndarray: np.array() np.zeros() np.ones() np.full() np.random.randn() les deux attributs les plus importants à retenir sont :

  • shape size pour développer des programmes puissants, pensez à définir le type de valeur dans le np.array() avec dtype = np.int16, np.float64
  • nous voyons aussi les méthodes les plus utiles pour manipuler la forme de nos tableau numpy: np.vstack np.hstack np.concatenate np.reshape np.squeeze np.ravel

Il n’y a rien de plus a retenir pour bien se lancer avec Numpy. Ignorez les autres attributs et méthodes pour le moment !

Timecode de la vidéo:
00:40 Le tableau Numpy, ses dimensions et sa shape
05:20 initialiser un ndarray: np.ones, np.zeros,
09:15 np.random.randn
12:04 np.linspace, np.arange
13:24 dtype=np.float16 np.float64
15:43 Assembler des tableaux: vstack hstack concatenate
18:40 np.reshape np.squeeze
22:10 np.ravel()
23:08 Exercice

Sommaire de cette formation Python – Machine Learning en 30 vidéos

[su_menu name=”formation_python_machinelearnia”]

Contributeur expert

Guillaume Saint-Cirgue

Guillaume Saint-Cirgue est Lead Data Scientist à GKNAerospace (Royaume-Uni). Ingénieur généra

Partager l'article

Levée de fonds record pour Databricks qui sécurise 10 milliards de dollars

Databricks, "The Data and AI company” pionnière de l’architecture data lakehouse, a récemment annoncé une levée de fonds record de 10 milliards de dollars lors...

Extension du Lille Ynov Campus : un pôle d’innovation au cœur du développement numérique de la métropole lilloise

Le jeudi 21 novembre dernier, Ynov, une école privée qui forme aux métiers du numérique, de la création et de l’innovation, a officiellement inauguré...

Deepfakes : YouTube et la Creative Artists Agency s’associent pour protéger l’image des célébrités

YouTube a annoncé ce 17 décembre s'associer à la Creative Artists Agency (CAA), l'une des agences les plus influentes dans le domaine du divertissement...

Le Hub France IA annonce l’ouverture des candidatures pour l’édition 2025 de sa cartographie des start-ups IA

Depuis 2020, le HUB France IA apporte, via sa cartographie, de la visibilité aux start-ups françaises prometteuses dont l’IA est le cœur du produit...